

 Page 1 of 15

Computer Science 2210 (Notes)
Chapter: 2.2 Programming

Topic: 2.2.1 Programming concepts
UDeclare and use variables and constants

UVariable
A variable is a value that can change during the execution of a program.

UConstant
A constant is a value that is set when the program initializes and does not change throughout the
program’s execution.

UDeclaration
A declaration is a statement in a program that gives the compiler or the interpreter information about a
variable or constant that is to be used within a program.
A declaration ensures that sufficient memory is reserved in which to store the values and also states the
variables’ data type. Reserved words/keywords cannot be used as identifier names as this generates a
compiler error and comes under the category of syntax error.

Declaration of local variables

 DIM MyCounter AS Integer
 DIM FirstName, LastName AS String (declares two variables)
 DIM TheLength AS Single
 DIM DOB AS Date
 DIM OverDueFlag AS Boolean

UScope
Scope indicates whether a variable can be used by all parts of a program or only within limited sections of
the program – for example, within a subroutine.

UGlobal variable
A global variable is one that is declared at the start of the main program and is visible (useable)
everywhere in the program and exists for the lifetime of the program.
Note that if one procedure changes the value of a global variable, then the next procedure that uses the
variable will be given this changed value – this is a common cause of errors.

ULocal variable
A local variable is one that is only visible inside the procedure or function in which it is declared.

Note that a local variable cannot be referenced from outside the procedure. In fact a local variable does
not exist until the procedure starts executing and it disappears when the procedure stops executing. Thus
any value that is held by a local variable is only stored temporarily.
The lifetime of a local variable is the lifetime of the procedure in which the local variable is declared.
The advantage of using local variables rather than global variables is that the same variable names can be
used in several different procedures without any chance of values being confused.

 Page 2 of 15

Computer Science 2210 (Notes)
Chapter: 2.2 Programming

Topic: 2.2.1 Programming concepts

Features of variables:

 Holds data in memory
 Are assigned a data type
 The data can change throughout the program’s operation
 The data input must be the same data type as assigned to that variable

Variables are assigned a name that holds the data. That name is used to distinguish it from the other
variables in your program. The name must not start with a number or character that is not a letter. Also,
the name of the variable must not be a reserved word like PRINT, INPUT, LET, ABS, BEEP, etc.

There are two ways to declare a variable in Basic.

The first is to put a data type symbol after the name

$ String
% Integer
! Single
Double

Examples:

MyName$
Num1%
Num2!
Answer!

Sample Code:

CLS
Header$ = "This is an example program"
Num1% = 5
Num2% = 6
Num5! = 4.5
Num6! = 6.75
Num7# = 56000.25
Num8# = 89000.34
CLS
PRINT Header$
PRINT Num1% + Num2%
PRINT Num6! / Num5!

 Page 3 of 15

Computer Science 2210 (Notes)
Chapter: 2.2 Programming

Topic: 2.2.1 Programming concepts
PRINT Num8# + Num2%

The second way is the preferred way since Visual Basic uses this method. DIM is used to make variables
of a data type.

DIM [Variable Name] As Data Type

DIM [Variable Name] AS STRING
DIM [Variable Name] AS INTEGER
DIM [Variable Name] AS LONG
DIM [Variable Name] AS SINGLE
DIM [Variable Name] AS DOUBLE

Examples:
DIM MyName AS STRING
DIM Num1 AS INTEGER
DIM Num2 AS SINGLE
DIM Answer AS SINGLE

Code:
DIM Num1 AS INTEGER
DIM Num2 AS LONG
DIM Num3 AS SINGLE
DIM Num4 AS DOUBLE
DIM Header AS STRING
CLS
Header = "This is another example"
Num1 = 5
Num2 = 56000
Num3 = 45.635
Num4 = 66000.5634#

PRINT Header
PRINT Num1 + Num2 + Num3 + Num4

Remember that selecting the right data type for the variable is very important to make the program run
properly.

 Page 4 of 15

Computer Science 2210 (Notes)
Chapter: 2.2 Programming

Topic: 2.2.1 Programming concepts
Using declared constants
Constants will be declared at the start of the main program. The following shows the declaration of
constants for Pi and the Value added tax rate.

 CONST Pi = 3.14159
 CONST VatRate = 0.175

Declaring constants at the start of a program means that maintenance is made easier for two reasons:
 If the value of a constant changes, it only has to be changed in the one part of the program

where it has been declared, rather than in each part of the program in which it is used;

 the code is easier to interpret:

For example:

 Total=VatRate*CostPrice
 Total=0.175*CostPrice

In the first statement, one can easily understand that the Total is the product of 2 variables

whereas; the VATRate was manually entered in the second statement creating ambiguity and a chance
that the VAT could be entered incorrectly.

Understand and use basic data types

Define and use different data types e.g. integer, real, boolean, character and string

A data type is a method of interpreting a pattern of bits.

Data types and data structures
Intrinsic data types
Intrinsic data types are the data types that are defined within a particular programming language.
There are numerous different data types. They are used to make the storage and processing of data easier
and more efficient. Different databases and programming systems have their own set of intrinsic data
types, but the main ones are:

 Integer;
 Real;
 Boolean;
 String;
 Character;
 Container

 Page 5 of 15

Computer Science 2210 (Notes)
Chapter: 2.2 Programming

Topic: 2.2.1 Programming concepts

Integer
An integer is a positive or negative number that does not contain a fractional part. Integers are held in
pure binary for processing and storage. Note that some programming languages differentiate between
short and long integers (more bytes being used to store long integers).

Real
A real is a number that contains a decimal point. In many systems, real numbers are referred to as singles
and doubles, depending upon the number of bytes in which they are stored.

Boolean
A Boolean is a data-type that can store one of only two values – usually these values are True or False.
Booleans are stored in one byte – True being stored as 11111111 and False as 00000000.

String
A string is a series of alphanumeric characters enclosed in quotation marks. A string is sometimes just
referred to as ‘text’. Any type of alphabetic or numeric data can be stored as a string: “Birmingham City”,
“3/10/03” and “36.85” are all examples of strings. Each character within a string will be stored in one byte
using its ASCII code; modern systems might store each character in two bytes using its Unicode. The
maximum length of a string is limited only by the available memory.

Dates
In most computer systems dates are stored as a ‘serial’ number that equates to the number of seconds
since January 1st, 1904 (thus they also contain the time). Although the serial numbers are used for
processing purposes, the results are usually presented in one of several ‘standard’ date formats – for
example, dd/mm/yyyy, or dd MonthName, yyyy. Dates usually take 8 bytes of storage.

Notes:

 if dates or numbers are stored as strings then they will not be sorted correctly; they will be sorted
according to the ASCII codes of the characters – “23” will be placed before “9”;

 Telephone numbers must be stored as strings or the leading zero will be lost.

Character
A character is any letter, number, punctuation mark or space, which takes up a single unit of storage
(usually a byte).

 Page 6 of 15

Computer Science 2210 (Notes)
Chapter: 2.2 Programming

Topic: 2.2.1 Programming concepts
Comparison of the common data types:

Program construct in Basic:

1.1) Counting
Counting in 1s is quite simple; use of the statement count = count + 1 will enable counting to be done (e.g. in
controlling a repeat loop).
The statement literally means: the (new) count = the (old) count + 1

It is possible to count in any increments just by altering the numerical value in the statement (e.g. count = count – 1)
will counts backwards.

1.2) Totaling
To add up a series numbers the following type of statement should be used:

total = total + number

This literally means (new) total = (old) total + value of number
| 10 x = 1 |
| 20 sum = 0 |
| 30 print x |
| 40 input "enter a number";n |
| 50 sum = sum + n |
| 60 x = x + 1 |
| 70 if x < 11 then goto 30 |
| 80 print "The sum of the numbers you gave is";sum |

 Page 7 of 15

Computer Science 2210 (Notes)
Chapter: 2.2 Programming

Topic: 2.2.1 Programming concepts
Sequence: Execution of the program usually following the order in which the steps are written.

Selection: A decision between alternative routes through the program that involves at least one condition.

Repetition: A step or sequence of steps repeated within the program as an iteration or loop.

The structure of procedural programs

Statement, subroutine, procedure, function, parameter, loop

Procedural programs are ones in which instructions are executed in the order defined by the programmer.

Procedural languages are often referred to as third generation languages and include FORTRAN, ALGOL,
COBOL, BASIC, and PASCAL.

Statement
A statement is a single instruction in a program, which can be converted into machine code and executed.

In most languages a statement is written on a single line, but some languages allow multiple lines for
single statements.

Examples of statements are:

DIM name As String
A=X*X
While x < 10

Procedure
A procedure is a subroutine that performs a specific task without returning a value to the part of the
program from which it was called.

Function
A function is a subroutine that performs a specific task and returns a value to the part of the program
from which it was called.

Note that a function is ‘called’ by writing it on the right hand side of an assignment statement.

 Page 8 of 15

Computer Science 2210 (Notes)
Chapter: 2.2 Programming

Topic: 2.2.1 Programming concepts
Parameter
A parameter is a value that is ‘received’ in a subroutine (procedure or function).

The subroutine uses the value of the parameter within its execution. The action of the subroutine will be
different depending upon the parameters that it is passed.

Parameters are placed in parenthesis after the subroutine name. For example:
Square (5) ‘passes the parameter 5 – returns 25
Square (8) ‘passes the parameter 8 – returns 64

Square(x) ‘passes the value of the variable x
Understand, create and use subroutines (procedures and functions), including the passing of parameters
and the appropriate use of the return value of functions

Use subroutines to modularize the solution to a problem

Subroutine/sub-program
A subroutine is a self-contained section of program code which performs a specific task and is referenced
by a name.
A subroutine resembles a standard program in that it will contain its own local variables, data types, labels
and constant declarations.

There are two types of subroutine. These are procedures and functions.

 Procedures are subroutines that input, output or manipulate data in some way
 Functions are subroutines that return a value to the main program.

A subroutine is executed whenever its name is encountered in the executable part of the main program.
The execution of a subroutine by referencing its name in the main program is termed ‘calling’ the
subroutine.

The advantage of using procedures and functions are that:

 The same lines of code are re-used whenever they are needed – they do not have to be repeated in
different sections of the program.

 A procedure or function can be tested/improved/rewritten independently of other procedures or
functions.

 It is easy to share procedures and functions with other programs – they can be incorporated into
library files which are then ‘linked’ to the main program;

 A programmer can create their own routines that can be called in the same way as any built-in
command.

 Page 9 of 15

Computer Science 2210 (Notes)
Chapter: 2.2 Programming

Topic: 2.2.1 Programming concepts
Sub Statement (Visual Basic)
Declares the name, parameters, and code that define a 0T 0T31TSub0T31T 0Tprocedure.

Sub name [(Of typeparamlist)] [(parameterlist)]
 [statements]
 [Exit Sub]
 [statements]
End Sub

All executable code must be inside a procedure. Use a0T 0T31TSub0T31T 0Tprocedure when you don't want to return a value to the
calling code. Use a0T 0T31TFunction0T31T 0Tprocedure when you want to return a value.

Sample Code:

Sub computeArea(ByVal length As Double, ByVal width As Double)
 ' Declare local variable.
 Dim area As Double
 If length = 0 Or width = 0 Then
 ' If either argument = 0 then exit Sub immediately.
 Exit Sub
 End If
 ' Calculate area of rectangle.
 area = length * width
 ' Print area to Immediate window.
 Debug.WriteLine(area)
End Sub

Function Statement (Visual Basic)
Declares the name, parameters, and code that define a Function procedure.

Function name [(Of typeparamlist)] [(parameterlist)] [As returntype]
 [statements]
 [Exit Function]
 [statements]
End Function

Sample Code:

Function myFunction(ByVal j As Integer) As Double
 Return 3.87 * j
End Function

javascript:void(0)
javascript:void(0)

 Page 10 of 15

Computer Science 2210 (Notes)
Chapter: 2.2 Programming

Topic: 2.2.1 Programming concepts
Convert following pseudocode into programs using any high level language:

The following five examples use the above pseudocode terms. These are the same problems discussed in
section 3.1 using flow charts – both methods are acceptable ways of representing an algorithm.

2.1 Example 1
A town contains 5000 houses. Each house owner must pay tax based on the value of the house. Houses
over $200 000 pay 2% of their value in tax, houses over $100 000 pay 1.5% of their value in tax and houses
over $50 000 pay 1% of their value in tax. All others pay no tax.
 Write an algorithm to solve the problem using pseudocode.

for count 1 to 5000

input house
if house > 50 000 then tax house * 0.01
else if house > 100 000 then tax house * 0.015
else if house > 200 000 then tax house * 0.02

else tax 0
print tax

next

For example,
count 0
while count < 5001

input house
if house > 50000 then tax house * 0.01

else if house > 100 000 then tax house * 0.015
else if house > 200 000 then tax house * 0.02

else tax 0
endif
endif

endif
print tax
count = count + 1

endwhile

EXERCISE: Re-write the above algorithm using a repeat loop and modify the if … then … else statements to include
both parts of the house price range.
(e.g. if house > 50000 and house <= 100000 then tax = house * 0.01)

 Page 11 of 15

Computer Science 2210 (Notes)
Chapter: 2.2 Programming

Topic: 2.2.1 Programming concepts

2.2 Example 2
The following formula is used to calculate n: n = x * x/(1 – x)
The value x = 0 is used to stop the algorithm. The calculation is repeated using values of x until the value x
= 0 is input. There is also a need to check for error conditions. The values of n and x should be output.

Write an algorithm to show this repeated calculation using pseudocode.

NOTE: It is much easier in this example to input x first and then loop round doing the calculation until
eventually x = 0. Because of this, it would be necessary to input x twice (i.e. inside the loop and outside the
loop). If input x occurred only once it would lead to a more complicated algorithm.

(Also note in the algorithm that <> is used to represent ≠).

A while loop is used here, but a repeat loop would work just as well.

input x
while x <> 0 do

if x = 1 then print “error”
else n = (x * x)/(1 – x)

print n, x
endif
input x

endwhile

2.3 Example 3
Write an algorithm using pseudocode which takes temperatures input over a 100 day period (once per day) and
output the number of days when the temperature was below 20C and the number of days when the temperature was
20C or above.

(NOTE: since the number of inputs is known, a for … to loop can be used. However, a while loop or a repeat loop
would work just as well).

total1 = 0 : total2 = 0
for days = 1 to 100

input temperature
if temperature < 20 then total1 = total1 + 1

else total2 = total2 + 1
endif

next
print total1, total2

 Page 12 of 15

Computer Science 2210 (Notes)
Chapter: 2.2 Programming

Topic: 2.2.1 Programming concepts
This is a good example of an algorithm that could be written using the case construct rather than if … then … else.
The following section of code replaces the statements if temperature < 20 then …… endif:
case temperature of
1: total1 = total1 + 1
2: total2 = total2 + 1
endcase

2.4 Example 4
Write an algorithm using pseudocode which:

 inputs the top speeds of 5000 cars
 outputs the fastest speed and the slowest speed
 outputs the average speed of all the 5000 cars

(NOTE: Again since the actual number of data items to be input is known any one of the three loop
structures could be used. It is necessary to set values for the fastest (usually set at zero) and the slowest
(usually set at an unusually high value) so that each input can be compared. Every time a value is input
which > the value stored in fastest then this input value replaces the existing value in fastest; and similarly
for slowest).

fastest = 0: count = 0
slowest = 1000
repeat

input top_speed
total = total + top_speed
if top_speed > fastest then fastest = top_speed

if top_speed < slowest then slowest = top_speed
endif

endif
count + count + 1

until count = 5000
average = total * 100/5000
print fastest, slowest, average

 Page 13 of 15

Computer Science 2210 (Notes)
Chapter: 2.2 Programming

Topic: 2.2.1 Programming concepts
2.5 Example 5
A shop sells books, maps and magazines. Each item is identified by a unique 4 – digit code. All books
have a code starting with a 1, all maps have a code starting with a 2 and all magazines have a code
beginning with a 3. The code 9999 is used to end the program.

Write an algorithm using pseudocode which input the codes for all items in stock and outputs the number
of books, maps and magazine in stock. Include any validation checks necessary.

(NOTE: A 4-digit code implies all books have a code lying between 1000 and 1999, all maps have a code
lying between 2000 and 2999 and all magazines a code lying between 3000 and 3999. Anything outside
this range is an error)

books = 0: maps = 0: mags = 0
repeat
 input code
 if code > 999 and code < 2000 then books = books + 1
 else if code > 1999 and code < 3000 then maps = maps + 1
 else if code > 2999 and code < 4000 then mags = mags + 1
 else print “error in input”
 endif:endif:endif
until code = 9999
print books, maps, mags

(NOTE: A function called INT(X) is useful in questions like this. This returns the integer (whole number)
part of X e.g. if X = 1.657 then INT(X) = 1; if X = 6.014 then INT(X) = 6 etc. Using this function allows us to
use the case statement to answer this question:

books = 0: maps = 0: mags = 0
repeat
 input code
 x = INT(code/1000) * divides code by 1000 to give a
 case x of * number between 0 and 9
 1: books = books + 1
 2: maps = maps + 1
 3: mags = mags + 1
 otherwise print “error”
 endcase
until code = 9999
print books, maps, mags

(This is probably a more elegant but more complex solution to the problem)

 Page 14 of 15

Computer Science 2210 (Notes)
Chapter: 2.2 Programming

Topic: 2.2.1 Programming concepts
Questions:

May/June 2006 P1
(a) Give two benefits of using a high-level language for writing programs. [2]
(b) State one type of program that would be written in a low-level language rather than a high-level
language and give a reason why. [2]

Oct/Nov 2007 P1
Give two differences between high level languages and low level languages.

Oct/Nov 2009 P1
Give two advantages of using high level languages when writing new computer software rather than using
low level languages

May/June 2010 P11
10 (a) Compilers and interpreters translate high-level languages. Give two differences between compilers
and interpreters.
(b) Programs can be written using high-level or low-level languages.
Give one advantage of using each method.
High-level language advantage
Low-level language advantage
(c) What is meant by top-down design when developing new software?

May/June 2011 P12

1 h = 0
2 c = 0
3 REPEAT
4 READ x
5 IF x > h THEN x = h
6 c = c + 1
7 PRINT h
8 UNTIL c < 20

The above code is an example of a high-level language.
Give TWO features of a high-level language. [2]
(c) The code is to be interpreted rather than compiled.
Give ONE difference between these two methods. [1]

 Page 15 of 15

Computer Science 2210 (Notes)
Chapter: 2.2 Programming

Topic: 2.2.1 Programming concepts
May/June 2012 P12

Look at these two pieces of code:

(a) Which of these pieces of code is written in a high-level language? [1]
(b) Give one benefit of writing code in a high-level language. [1]
(c) Give one benefit of writing code in a low-level language. [1]
(d) High-level languages can be compiled or interpreted.
Give two differences between a compiler and an interpreter. [2]

	1.1) Counting
	1.2) Totaling
	Sub Statement (Visual Basic)
	Function Statement (Visual Basic)
	Declares the name, parameters, and code that define a Function procedure.
	2.1 Example 1
	2.2 Example 2
	2.3 Example 3
	2.4 Example 4
	2.5 Example 5

